skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Gómez, Demián"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract. For nearly 3 decades, geodetic Global Navigation Satellite System (GNSS) measurements in Antarctica have provided direct observations of bedrock displacement, which is linked to various geodynamic processes, including plate motion, post-seismic deformation, and glacial isostatic adjustment (GIA). Previous geodynamic studies in Antarctica, especially those pertaining to GIA, have been constrained by the limited availability of GNSS data. This is due to the fact that GNSS data are collected by a wide range of institutions and network operators, with the raw observational data either not publicly available or scattered across various repositories. Further, the metadata necessary for rigorous data processing have often not been available or reliable. Consequently, the potential of GNSS observations for geodynamic studies in Antarctica has not been fully exploited yet. Here, we present consistently processed coordinate time series for GNSS sites in Antarctica and the sub-Antarctic region for the time span from 1995 to 2021. The data set is composed of 286 continuous and episodic sites, with 258 sites having a time span longer than 3 years. The coordinate time series were obtained from a combination of four independent processing solutions using different GNSS software and products, allowing the identification of inconsistencies in individual solutions. From these, we infer a reliable and robust combined solution. A key issue was the thorough reassessment of station metadata to minimise artefacts and biases in the coordinate time series. The resulting data set provides coordinate time series with unprecedented spatiotemporal coverage, promising significant advancements in future geodynamic studies in Antarctica. The data set is freely available at https://doi.org/10.1594/PANGAEA.967515 (Buchta et al., 2024a). 
    more » « less
  2. Abstract Although modern global geometric reference frames (GRFs) such as the International Terrestrial Reference Frame (ITRF) can be used anywhere on Earth, regional reference frames (RRFs) are still used to densify geodetic control and optimize solutions for continental-scale areas and national purposes. Such RRFs can be formed by densifying the ITRF, utilizing GPS / GNSS stations common to both the ITRF and the RRF. It is possible to attach a RRF to a GRF by ensuring that some or all of the coefficients of the trajectory models in the RRF are ‘inherited’ from the trajectory models that define the GRF. This can be done on an epoch-by-epoch basis, or (our preference) via transformations that operate simultaneously in space and time. This paper documents inconsistencies in the densification of ITRF that arise when the common stations’ trajectory models ignore periodic displacements. This results in periodic coordinate biases in the RRF. We describe a generalized procedure to minimize this inconsistency when realizing any RRF aligned to the ITRF or any other ‘primary’ frame. We show the method used to realize the Argentine national frame Posiciones Geodésicas Argentinas (POSGAR) and discuss our results. Discrepancies in the periodic motion amplitudes in the vertical were reduced from 4 mm to less than 1 mm for multiple stations after applying our technique. We also propose adopting object-oriented programming terminology to describe the relationship between different reference frames, such as a regional and a global frame. This terminology assists in describing and understanding the hierarchy in geodetic reference frames. 
    more » « less
  3. Abstract The Patagonia Icefields (PIF) are the largest non-polar ice mass in the southern hemisphere. The icefields cover an area of approximately 16,500 km 2 and are divided into the northern and southern icefields, which are ~ 4000 km 2 and ~ 12,500 km 2 , respectively. While both icefields have been losing mass rapidly, their responsiveness to various climate drivers, such as the El Niño-Southern Oscillation, is not well understood. Using the elastic response of the earth to loading changes and continuous GPS data we separated and estimated ice mass changes observed during the strong El Niño that started in 2015 from the complex hydrological interactions occurring around the PIF. During this single event, our mass balance estimates show that the northern icefield lost ~ 28 Gt of mass while the southern icefield lost ~ 12 Gt. This is the largest ice loss event in the PIF observed to date using geodetic data. 
    more » « less
  4. Abstract The Southern Andes, in Patagonia, are a well‐known hotspot of orographic gravity waves (oGWs) during winter when atmospheric conditions, such as temperature, wind speed, and wind direction, favor their generation and propagation. In the summer, oGWs above the mesosphere and oGW‐induced ionospheric perturbations are rarely observed because vertical wave propagation conditions are unfavorable. Nevertheless, when atmospheric conditions deviate significantly from those typical of summer, for example, during a solar eclipse (SE), the atmospheric temperature and wind changes can allow oGWs to reach ionospheric heights. Global Navigation Satellite Systems (GNSS)‐based ionospheric total electron content (TEC) studies of the 2017 North American eclipse showed oGW‐compatible observations near the totality zone around the Rocky Mountains, and it was suggested, but not shown, that these were likely oGWs. In this work, we report, model, and interpret GNSS TEC perturbations observed during the December 14, 2020 total SE in South America. TEC data recorded near the Andes during this total SE are in good agreement with predictions by the SAMI3 ionospheric model until shortly after the passage of the umbra. TEC data after totality can best be explained with the interpretation that the observation of oGWs was favored by the passage of the eclipse over the Andes Mountains. 
    more » « less